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Agenda  
(10 slides, 3 goals)"
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Get your help on Root Cause"
–  How to represent interdependencies?"

Encourage you towards standardized validation data"
–  Component Operations Status (COS)"

Make you aware of some other work"
–  Sisyphus (Logs)"
–  9Lives (OS)"



Identify Faults (CSSE)"
–  Failure Prediction 
–  Root cause analysis 
–  Impact: enable timely and focused 

response"

Respond (LDRD): 
–  System-Directed Resilience  
–  Impact: enable apps to run 

continuously despite faults 

Goal: Automatic identification and response to faults 

Context: Resilience Activities at Sandia"
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Validate 



Root Cause: Big Cheese Model"
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C
om

ponents 
What Stinks?!# 

Distinguishing Symptoms"
–  Text (logs, username, job id, rank id, …)"
–  Numbers (temperature, correlation, …)"

Suspect Components"
–  Hardware (racks, cores, routes, …)"
–  Software (daemons, apps, libraries, …)"

Dependencies"
–  Functional, Physical"
–  Static, Dynamic"

Root Cause (likelihood ranked)"

* Holes: incomplete data, incomplete time, incomplete components, incomplete dependencies 

* 

Given hints (influences search path): 

Identify: 
&

 D
ependencies! 



Root Cause: Big Cheese Model"
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Distinguishing Symptoms"
–  Text (logs, username, job id, rank id, …)"
–  Numbers (temperature, correlation, …)"

Suspect Components"
–  Hardware (racks, cores, routes, …)"
–  Software (daemons, apps, libraries, …)"

Dependencies"
–  Functional, Physical"
–  Static, Dynamic"

Root Cause (likelihood ranked)"

* Holes: incomplete data, incomplete time, incomplete components, incomplete dependencies 

Given hints (influences search path): 

Identify: 

LABELS  "

VERTICES  

EDGES  

G=(V,E,L) 
Properties? 
Useful model? 
Useful algorithms? 



User u1, jobid 1, node X, … 
   “timeout writing…” 

User u1, jobid 2 filesystem f, node Y, … 
   “CRC error Y->Z” 

I/O server s 

node Z 

filesystem f 

. 

. 

. 

Disk d 

. 

. 

. 

Input:    “jobid1, jobid2” 
Output: “link L, retransmit=5” 

Input:   “CRC error, today” 
Output: “link L, user u1, jobid 1” 

Link L 
retransmit=5 

(network routes) 
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Root Cause: Flakey Link (e.g.)"



FYʼ09 Root Cause Deliverables"

First Quarter"
–  Mathematical formulation of at least three important but 

currently non-computable root cause scenarios based on 
current systems"

Second Quarter"
–  Select appropriate algorithms for solution. "

Third Quarter"
–  Demonstrate proof-of-concept solutions. "

Fourth Quarter"
–  SAND report"
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Validation: 
“Quantify our ability to predict node failures on the TLCC platform”"

Component Operations Status (COS) 
Production Uptime (PU) = ready for immediate use by one or more production user 
Scheduled Downtime (SD) = not in PU for scheduled reasons 
Unscheduled Downtime (UD) = not in PU for unscheduled reasons 

" "FAILURE = the onset of Unscheduled Downtime"

FY09:"
1.  Collect per-node COS on TLCC (admins express “SD” on CLI)"
2.  Perform prediction experiments on symptomatic data (numeric, text)"
3.  Use COS to quantify (and validate) prediction results"

COS is a proposed standard"

Stearley. Defining and Measuring Supercomputer Reliability, 
Availability, and Serviceability (RAS), LCI05."



Recent Work on Logs (5 years worth) 
Oliner, Stearley. Alert Detection in System Logs, ICDMʼ08. 

 www.cs.sandia.gov/sisyphus          cfdr.usenix.org/data.html#hpc4"



Responding to Faults (9Lives)  
System-Directed Resilience (LDRD)"

Three Primary Research Thrusts"
•  Application quiescence"

–  Suspend App, handle in-flight messages and in-progress IO"

•  Efficient state management"
–  Identify critical state (app characterization, app guidance, changesets)"
–  System guidance for when to extract state (eg MTTI)"
–  Explore diskless methods and compression "

•  Fault recovery"
–  System software to support dynamic node allocation"
–  Explore network virtualization to abstract physical node ID from software."
–  Explore efficient methods for state recovery (roll-back, roll-forward techniques)"

Low Overhead (easier to develop and support, faster to run)"
•  Lightweight Kernel (Kitten)"
•  Stateless Networking Protocol (Portals)"
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End"
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Get your help on Root Cause"
–  How to represent interdependencies?"

Convince you towards standardized validation metrics"
–  Component Operations Status (COS)"

Make you aware of some other work"
–  Sisyphus (Logs)"
–  9Lives (OS)"



Extra Slides"
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1. Automatically rank logs 
    by information content. 

Sisyphus  
Automatic Fault Detection"

2. Automatically color words by 
    information weight. 

3. Automatically deduce 
    word and message patterns. 

“interestingness” =  
information = |(GL)j| 

Gi,j=1+Hi    ,   L=log2(tfi,j)  
Hi=∑jpijlog2(pij)/log2(n)  
  where pij= tfi,j /∑jtfi,j 

L 

|(GL)j| 

words logs 

time 

G 

“i
nt

er
es

tin
gn

es
s”
"

Similar computers correctly performing similar work 
should produce similar logs (anomalies warrant investigation). 

Jon Stearley 
jrstear@sandia.gov 



Identifying and Predicting Faults"

Research to Identify Root Cause"
–  Develop mathematical methods to describe and track dependencies 

between system components!
–  Develop tools to analyze models, identify root cause, and provide 

feedback to fault-response systems (e.g., the system directed LDRD)"

Research on Fault Prediction"
–  Develop methodologies for anomaly detection and quantification"
–  Correlate anomalous behaviors with root causes"
–  Use automated anomaly detection and learned correlations to predict 

failures with a calculated level of confidence"

Impact"
–  Critical enabler for automated response (also useful to admins)"
–  Mathematics necessary to design and operate truly resilient systems"
–  Quantify the system-wide impact of failures."
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First Quarter"
–  Enumerate list of faults, likelihood of fault, and possible response (Stearley)"
–  Investigate options for quiescence (Brightwell)"
–  Investigate diskless state management and node recovery (Oldfield)"
–  Investigate related projects – BLCR (Kordenbrock)"

Second Quarter"
–  Complete design of code to trace application memory usage (Pedretti)"
–  Complete design of network virtualization layer (Brightwell)"
–  Complete design of fake RAS system (Riesen)"
–  Complete design of diskless state management and recovery (Oldfield)"

Fourth Quarter"
–  Memory-use characterizations for selected applications (Pedretti)"
–  Demonstrate response to link failures – may not need node recovery (Laros)"
–  Demonstrate network virtualization layer (Brightwell)"
–  Demonstrate fake RAS – inject faults (Riesen)"

FYʼ09 9Lives Deliverables"
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FYʼ09 Prediction Deliverables"
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•  First Quarter"
–  Selection of algorithms for anomaly detection (multivariate distributions and time series 

phenomena) "
–  Define database schema for collection of system variables and for representation of data to 

support the different analyses"

•  Second Quarter"
–  Quantification methodologies, failure definition and recording mechanisms, data collection (CPM, 

Log, Workload, COS, etc.)"

•  Third Quarter"
–  Implementation and validation of anomaly detection algorithms"
–  Selection of algorithms for correlation of failures with anomalies (classification and root cause 

inference)"
–  Attributes selected for predictive analysis"
–  Scalable data collection and representation"

•  Fourth Quarter"
–  Implementation and validation of failure to anomaly correlation techniques"
–  Write SAND report documenting:"

•  Quantification of the ability to predict failures on the TLCC platform  
•  Additional information/data that should be collected, as well as suggested scalable collection 

mechanisms, in order to improve failure predictability on future platforms 



Proposed Process for  
Collecting per-node COS on TLCC"
Scheduled 
Downtime 

Unscheduled 
Downtime 

Production 
Uptime 

SLURM and MOAB logs and databases are postprocessed into COS records."

All downtimes are counted as Unscheduled, unless distinguishable otherwise:"

Only the admins know if a downtime is scheduled or not, so they must be 
involved in distinguishing them.  The easiest way to do this would be to use a 
flag to scontrol and mrsvctl like: 

   scontrol -sd [cause…] 
   mrsvctl  -sd [cause…] 

Which would be shorthand for  

   scontrol reason=“SD: [cause]”  
   mrsvctl -a ACCT=SD -D “SD: [cause]” 

Where [cause] is an optional argument describing the downtime.   
-sd could be added, aliased, or wrapped.  More details are on the next slide."



SNL Resilience Interactions"



Root Cause: Graph Model"
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Distinguishing Symptoms  ""
–  Text (logs, username, job id, rank id, …)"
–  Thresholds (temperature limits, …)"
–  Waveforms (cpu profile, …)"
–  Correlations"

Suspect Components  ""
–  Hardware (racks, cores, routes, …)"
–  Software (daemons, apps, libraries, …)"

Dependencies  " ""
–  Functional, Physical"
–  Static, Dynamic"

Root Cause (likelihood ranked)"

* Holes: incomplete data, incomplete time, incomplete components, incomplete dependencies 

Given hints (influences search path): 

Identify: 

LABELS  "

VERTICES  

EDGES  

(paths)"

G=(V,E,L) 
Properties? 
Useful model? 
Useful algorithms? 


